Fourier Operators in Applied Harmonic Analysis
نویسندگان
چکیده
We give a program describing the pervasiveness of the short-time Fourier transform (STFT) in a host of topics including the following: waveform design and optimal ambiguity function behavior for radar and communications applications; vector-valued ambiguity function theory for multi-sensor environments; finite Gabor frames for deterministic compressive sensing and as a background for the HRT conjecture; generalizations of Fourier frames and non-uniform sampling; and pseudo-differential operator frame inequalities.
منابع مشابه
Dynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملOscillatory Data Analysis and Fast Algorithms for Integral Operators a Dissertation Submitted to the Department of Mathematics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
This dissertation consists of two independent parts: oscillatory data analysis (Part I) and fast algorithms for integral operators in computational harmonic analysis (Part II). The first part concentrates on developing theory and efficient tools in applied and computational harmonic analysis for oscillatory data analysis. In modern data science, oscillatory data analysis aims at identifying and...
متن کاملA contribution to approximate analytical evaluation of Fourier series via an Applied Analysis standpoint; an application in turbulence spectrum of eddies
In the present paper, we shall attempt to make a contribution to approximate analytical evaluation of the harmonic decomposition of an arbitrary continuous function. The basic assumption is that the class of functions that we investigate here, except the verification of Dirichlet's principles, is concurrently able to be expanded in Taylor's representation, over a particular interval of their do...
متن کاملTriangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کامل